An easier and more awesome proof of the FTC

Peyam Ryan Tabrizian

Wednesday, March 23rd, 2011

The book gives a pretty complicated and non-standard proof of the FTC. Here's a more straightforward version which I hope is easier to understand!

1 FTC - Part II

I will start with FTC - Part II, because then FTC - Part I will be easier to prove!

Theorem (FTC - Part II). If f is integrable on $[a, b]$, then:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f
The proof of this is based on two easy facts:
Fact 1.

$$
\frac{F\left(x_{i}\right)-F\left(x_{i-1}\right)}{\frac{b-a}{n}}=f\left(c_{i}\right)
$$

for some c_{i} in $\left(x_{i-1}, x_{i}\right)$
Proof. This is just the MVT on $\left(x_{i-1}, x_{i}\right)$. Namely, there is a c_{i} in $\left(x_{i-1}, x_{i}\right)$ such that:

$$
\frac{F\left(x_{i}\right)-F\left(x_{i-1}\right)}{x_{i}-x_{i-1}}=F^{\prime}\left(c_{i}\right)
$$

However, $F^{\prime}\left(c_{i}\right)=f\left(c_{i}\right)$ since F is an antiderivative of f.
Moreover, $x_{i}-x_{i-1}=\Delta x=\frac{b-a}{n}$ (remember that $x_{i}-x_{i-1}$ is just the width of the i-th rectangle). So putting those two facts together, we get:

$$
\frac{F\left(x_{i}\right)-F\left(x_{i-1}\right)}{\frac{b-a}{n}}=f\left(c_{i}\right)
$$

Fact 2.

$$
\sum_{i=1}^{n} F\left(x_{i}\right)-F\left(x_{i-1}\right)=F(b)-F(a)
$$

Proof. Convince yourself that this is true by writing out that sum for a couple of values of n. Let's do this for $n=4$:

$$
\begin{aligned}
\sum_{i=1}^{4} F\left(x_{i}\right)-F\left(x_{i-1}\right) & =F\left(x_{1}\right)-F\left(x_{0}\right)+E\left(x_{2}\right)-E\left(x_{1}\right)+E\left(x_{3}\right)-E\left(x_{2}\right)+F\left(x_{4}\right)-E\left(x_{3}\right) \\
& =F\left(x_{4}\right)-F\left(x_{0}\right) \\
& \left.=F(b)-F(a) \quad \text { (here } x_{4}=b \text { and } x_{0}=a\right)
\end{aligned}
$$

This kind of sum where 'almost everything cancels out' is called a 'telescoping sum'. You will encounter many more telescoping sums in Math 1B.

Now that we know those two facts, the proof of the FTC is very easy:
Proof. By definition:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}^{*}\right)
$$

Since f is integrable on $[a, b]$, we can choose any x_{i}^{*}, as long as it is in $\left(x_{i-1}, x_{i}\right)$. Now the trick is: Choose $x_{i}^{*}=c_{i}$, wher c_{i} is given by Fact 1. Then we get:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(c_{i}\right) \\
& =\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} \frac{F\left(x_{i}\right)-F\left(x_{i-1}\right)}{\frac{b-a}{n}} \quad \quad \text { (by Fact 1) } \\
& =\lim _{n \rightarrow \infty}\left(\frac{b-a}{n}\right) \frac{1}{\frac{b-\alpha}{n}} \sum_{i=1}^{n} F\left(x_{i}\right)-F\left(x_{i-1}\right) \quad\left(\frac{1}{\frac{b-a}{n}} \text { doesn't depend on } i\right. \text {, so take it out of the sum) } \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} F\left(x_{i}\right)-F\left(x_{i-1}\right) \\
& =\lim _{n \rightarrow \infty} F(b)-F(a) \quad(\text { by Fact } 2) \\
& =F(b)-F(a) \quad(F(b)-F(a) \text { is just a constant!) }
\end{aligned}
$$

2 FTC - Part I

Now that we know FTC - Part II, proving FTC - Part I is a breeze!
Theorem (FTC - Part I). If f is integrable on $[a, b]$, then:

$$
\left(\int_{a}^{x} f(t) d t\right)^{\prime}=f(x)
$$

Proof. Let F be an antiderivative of f. Then:

$$
\left(\int_{a}^{x} f(t) d t\right)^{\prime}=(F(x)-F(a))^{\prime}=(F(x))^{\prime}-(F(a))^{\prime}=f(x)-0=f(x)
$$

Where we used FTC - Part II, the fact that $(F(x))^{\prime}=f(x)$ and $(F(a))^{\prime}=0$ (because $F(a)$ is just a constant!)

